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We describe the construction of a three-phase equation of state (EOS) for elemental beryllium.
The phases considered are: the ambient hcp phase, the high-temperature bcc phase, and the liquid.
The free energies of the solid phases are constructed from cold, ion-thermal, and electron-thermal
components derived from ab initio electronic structure-based calculations. We find that the bcc
phase is unstable near ambient conditions, and that even at high pressures at which the bcc phase is
stable, the bcc-hcp energy barrier can be as small as a few hundred Kelvins. The liquid free energy
is based on a model of Chisolm and Wallace and is constrained by using the melt curve (determined
by ab initio 2-phase simulations) as a reference. The high-temperature plasma limit is addressed
with an average-atom-in-jellium model. Comparisons to experimental results, both for the ambient
hcp phase, and for the phase diagram as a whole, are discussed.

PACS numbers: 81.30.Bx,91.60.Fe,91.60.Gf,91.30.Mv

I. INTRODUCTION

Even after a few decades of research [1], the phase di-
agrams of elemental metals in the multi-megabar range
still constitutes a field of active fundamental investiga-
tion [2]. Much of this is due to the myriad experimen-
tal difficulties associated with achieving and maintaining
such pressures, together with the paucity of diagnostic
techniques capable of determining phase information at
ultra-high P and T . On the theoretical side, the major
challenge is the development of first-principles methods
which are able to reproduce (or indeed, predict) free en-
ergy differences between competing phases in instances
where these differences decrease significantly as pressure
is increased [3]. This is a special challenge in closed-
packed metals, where energy differences between, for in-
stance, bcc and hcp phases can be extremely small even
at moderate pressures where continuous transformations
between such structures are possible [4].

Beryllium is one such element that falls squarely into
the category of a poorly understood closed-packed metal.
As we shall discuss, its competing solid phases are ex-
tremely close in energy throughout a wide range of com-
pressions, and there exist transformation paths between
these phases which have been predicted to give rise to
mechanical instabilities near ambient conditions [5, 6].
In addition, beryllium has recently received considerable
attention as a possible ablator material for fuel capsules
to be used in inertial confinement fusion experiments
[7]. The engineering design of these capsules is based on
large-scale hydrodynamic simulations [8], which model
the behavior of the materials at the extreme tempera-
tures and pressures of the experiment. In order to close
the set of hydrodynamic equations, it is necessary to
introduce the equation of state (EOS) of the material,
which in turn depends on its phase (solid, liquid). It

is therefore of crucial importance to know the phase di-
agram of the system, denoting which phase is thermo-
dynamically stable in a given set of pressure and tem-
perature conditions [9]. Information about EOS and the
phase diagram should, where possible, be obtained di-
rectly from experiment. However, many conditions of
interest are outside the range where highly-accurate ther-
modynamic data are available. It is then often necessary
to rely on theoretical predictions of EOS, which again are
related to theoretical predictions of the phase diagram in
these extreme conditions.

Even at temperatures below melting, and at pressures
below 100 GPa, the phase diagram of beryllium is still
quite poorly known. At ambient pressure and temper-
ature, hcp Be is known to possess a non-ideal c/a ra-
tio. When heated at ambient pressure, experiments [10]
have detected a solid-solid phase transition to what is
believed to be a bcc structure in a narrow range of tem-
perature prior to melting. These experiments suggest
that the hcp-bcc phase boundary has a negative slope,
while subsequent work suggests that it may be positive
[11]. The conflicting observations have motivated nu-
merous research efforts to search for a possible pressure-
driven transition at room temperature. While theoretical
calculations have provided a large range of pressures at
which this transition may happen, no experiments (up to
300 GPa) have yet found any evidence of it [12, 13]. In
addition, more recent diamond anvil-cell x-ray measure-
ments have failed to find any evidence for a bcc phase
for temperatures between 300 and 2000 K, and pressures
between 15 and 50 GPa [13].

Recent theoretical studies aimed at determining the
hcp-bcc phase line [5, 6, 14, 15] throughout a wide
range of temperatures have employed ab initio electronic
structure calculations to constrain phase-dependent free
energy models which include cold compression, quasi-
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harmonic ion-thermal, and (deemed negligible here)
electron-thermal contributions. By using a standard
form for the quasiharmonic ion-thermal contribution [17]
constrained by ab initio phonon density of states (PDOS)
results together with cold and electron-thermal pieces,
Rudin et al. [5] obtained an hcp-bcc transition tempera-
ture well above that inferred from experiment. Robert et
al. [14] obtained a similar result from their nearly equiva-
lent ab initio calculations, and showed that roughly a 30
percent reduction of the bcc Debye temperature would
be needed to bring the extrapolation of the ambient-
pressure hcp-bcc transition temperature below the melt
line. Kadas et al. [15] argued that the presence of the bcc
phase seen in the early experiments [10, 11] could be ex-
plained by an electronic topological transition, in which
the elastic constants of the bcc phase are softened greatly
due to Fermi surface nesting effects. In these works, the
authors pointed out the possibility that the bcc phase
could exhibit large anharmonic effects which could affect
the transition line substantially, a point motivated by the
instability of bcc Be near ambient conditions due to a soft
phonon mode [5, 6, 14, 15].

In this study, we construct a 3-phase EOS for Be,
paying particular attention to the accurate prediction of
the hcp-bcc phase line. In support of this, we perform
T = 0 ab initio total energy calculations along the so-
called Burgers path, connecting bcc to hcp, in which we
find the energy barrier between hcp and bcc to be very
small (well below kBTmelt). The free energy of the liquid
phase is taken to be of the form suggested by Chisolm
and Wallace [16], and is constrained by requiring that the
solid-liquid phase line is that as obtained by ab initio 2-
phase simulations [26], together with Wallace’s assump-
tion of a latent heat which is independent of compres-
sion [3, 17]. The very high-T limit, in which inner-shell
ionization occurs and the resulting electron-thermal free
energy is pronounced, is addressed by connecting to the
results of Purgatorio [18], a density functional theory-
based average-atom-in-jellium model. Our multiphase
EOS for Be exhibits an hcp-bcc-liquid triple point at ∼
180 GPa and 4500 K, and a principal shock Hugoniot
which possesses a small portion in the bcc-stable region.
We predict no thermodynamically stable bcc phase be-
low P ∼ 180 GPa, in agreement with previous predic-
tions [5, 6, 14], but in contrast to earlier experiments
[10, 11]. Comparisons to available experimental results
are discussed.

II. CONSTRUCTION OF HCP AND BCC FREE
ENERGIES

We make the fundamental assumption that the
Helmholtz free energy (E − TS) for each phase can be
decomposed into a sum of three independent terms:

F (V, T ) = F0(V ) + Fi(V, T ) + Fe(V, T ) (1)

where F0 represents the total energy of the system at
T = 0 with fixed ionic positions, Fi is the thermal contri-
bution from ionic motion together with the free energy
due to zero-point motion, and Fe represents the ther-
mal contribution from excited electrons. All calculations
we perform to construct the above terms are based on
self-consistent electronic structure theory using the Gen-
eralized Gradient Approximation (GGA) within Density
Functional Theory (DFT) as parameterized by Perdew-
Burke-Ernzerhof (PBE)[19]. We compute F0(V ), hence-
forth called the cold curve, of each phase using both
plane-wave pseudopotential [20] and LMTO all-electron
methods. Ground state energies were computed over a
range of pressures from 0 to 1400 GPa. A planewave
energy cutoff of 60 Rydbergs was used throughout all
of our pseudopotential calculations. A k-point mesh
of 24 × 24 × 15 in the full Brillouin zone was used for
hcp, while a 24 × 24 × 24 mesh was used for bcc. The
Be pseudopotential was chosen to be of the Troullier-
Martins type[21] using the Kleinman-Bylander separable
form [22] with s,p-non-local and d-local channels and a
matching radius of 0.7938Å. At each pressure, internal
cell parameters were optimized. While bcc can be de-
scribed by just one parameter (chosen to be the size the
cubic cell), hcp requires two parameters: a describing
the size of the hexagons in the close-packed layers, and
c the distance between them. For convenience, hcp has
been represented with an orthorhombic supercell which
corresponds to twice its elemental cell. Below a volume
of 3.6Å3/atom (P > 400 GPa), we use the all-electron
method to obtain ground state energies; at intermediate
volumes, we find the results of our pseudopotential cal-
culations to be in good agreement with the all-electron
computations.

A. Internal energies at T= 0

Up to roughly 400 GPa, hcp has a lower energy than
bcc. Fig. 1 shows our computed hcp and bcc cold curves,
presented as continuous functions of V by fitting using
the Vinet et al. form [23],

F0(V ) =
4V0B0

(B1 − 1)2
[1− (1 +X) exp(−X)] + φ0, (2)

where φ0 is the minimum energy and

X =
3
2

(B1 − 1) ∗ [(V/V0)1/3 − 1]. (3)

We obtain the fit parameters: V0(hcp)= 7.751Å3/atom,
B0(hcp)= 111.5 GPa, B1(hcp)= 3.69; V0(bcc)=
7.618Å3/atom, B0(bcc)= 116.7 GPa, B1(bcc)= 3.64, to-
gether with an energy difference between their respec-
tive energy minima of Ebcc

0 −Ehcp
0 = 0.108 eV/atom[24].

Note that at each volume, the energy difference be-
tween the phases is remarkably small, as noted by others
[5, 6, 14]. The pressure-volume relation (containing in-
formation about equilibrium volumes and bulk moduli),



3

3 4 5 6 7 8

V (Angstrom
3
/atom)

-31

-30

-29

-28

-27

F 0(V
) 

(e
V

/a
to

m
)

hcp
bcc

FIG. 1: Vinet fits [23] to cold curves for hcp (solid) and bcc
(dashed) Be.

and the dependence of the hcp c/a ratio on pressure can
be compared with diamond-anvil cell experiments. The
equilibrium density and structural parameters of the hcp
phase at ambient conditions are in good agreement with
values published in the literature. We compare these val-
ues in the next section, after we have accounted for the
effects of zero-point motion and thermal expansion. For
now, we note that in agreement with previous theoreti-
cal work [5, 6, 25] and experimental results [12], we find
that the c/a ratio of hcp Be has the small value of 1.57 at
ambient pressures, and rises gradually towards the ideal
value of 1.633 at higher pressures.

Motivated by ab initio MD studies of Be melting [26],
in which bcc and hcp phases of Be were seen to transform
into each other rather readily at certain high-T condi-
tions, we chose to study the energetics of possible trans-
formation paths between them. Clearly defined trans-
formation paths exist between simple crystal structures,
such as the Bain path connecting bcc and fcc [27], and
the Burgers path connecting bcc and hcp [28]. In several
elements, the existence of these paths leads to martensitic
transitions, that is, phase transformations that occur as a
collective change of the whole sample, rather than by nu-
cleation. It is possible to analyze intermediate structures
along these paths as a means to understand the rela-
tive stability of the phases and the existence of potential
barriers hindering the transitions. In conducting these
studies, it is necessary to achieve an extremely high de-
gree of convergence with respect to the representation of
the single-electron wave functions in terms of plane waves
and the k-point sampling of these wave functions. Poorly
converged results can dramatically affect the shape of
these potential surfaces and artificially distort structures
from their equilibrium. We chose an energy cutoff of
120 Rydbergs and a k-point mesh for the 4-atom rhom-
bohedral cell of 24 × 24 × 24 for this part of our work.
This ensures that our energies are converged to within
0.1 meV/atom (corresponding to a temperature of 1.16
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FIG. 2: Ground state energy difference (neglecting zero-
point motion) E(α, δ) − Ehcp in Kelvins for Be along the 2-
dimensional plane of parameters (α, δ) describing the Burgers
path for V= 7.63Å3/atom.

K) and our pressures to within 0.005 GPa.
The Burgers path [28], connecting bcc to hcp, consists

of two separate distortions: a shear deformation consist-
ing of a compression along < 100 >bcc and an elonga-
tion along < 110 >bcc, and a relative shuffling of alter-
nate < 110 > planes, corresponding to the T1 N -point
phonon mode of the bcc lattice [4]. This transformation
can best be represented by choosing a tetragonal cell for
bcc containing 4 atoms, with a = b =

√
2c, c being the

side of the conventional cubic cell. In this reference cell,
< 100 > planes will become, after the shear deformation,
the hexagonal layers of hcp. The relative shuffling of the
hexagonal layers is represented by a displacement param-
eter δ, defined to be the (unitless) relative amplitude of
the T1 N -point phonon (see Ref.[4] for details). The an-
gle between [111]-directions is denoted α. For the hcp
structure, α= 120 degrees, while for bcc, α= 109.47 de-
grees. Deformation of this type brings the system to an
hcp structure characterized by c/a = 1.57, smaller than
the ideal value of 1.633. Additional distortions can be
made which allow for different c/a ratios, but we chose
to fix this value for this part of the study (since this is
essentially equal to the equilibrium value we found at
ambient conditions) and compute the total energy as a
function of (δ, α) at several volumes. Fig. 2 shows the
ground state total energy difference for Be at T = 0 as a
function of δ and α for V= 7.63Å3/atom (P ∼ 0 GPa).
The energy surface possesses a minimum at hcp, while in
the neighborhood of bcc, the magnitude of the energy is
higher and the surface is quite flat. In particular, there
is no barrier preventing bcc from transforming directly
into hcp. This instability of bcc Be near ambient pres-
sures was recognized by others previously in the context
of ab initio phonon calculations [5, 6], in which imaginary
phonon frequencies were computed at low pressures. We
note here that even at higher pressures at which bcc is
mechanically stable, the energetic barrier between bcc and
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FIG. 3: Ground state energy difference (neglecting zero-point
motion) of Be along a 1-D slice through the 2-dimensional
Burgers path for V= 7.63 and 3.75Å3/atom.

hcp along the Burgers path can be exceptionally small.
This is illustrated in Fig. 3, which shows 1-D projections
of the Burgers energy surface in which α is varied, and δ is
chosen to give the lowest energy for each α. Two volumes
are shown: V= 7.63Å3/atom (P ∼ 0), and 3.75Å3/atom
(P ∼ 300 GPa). Note that for V= 3.75Å3/atom, bcc
(α = 109.47 degrees) is indeed metastable, as also demon-
strated by phonon calculations, but the energy barrier is
a rather small ∼ 400K, far lower than the melt temper-
ature at this pressure. In addition, we have found that
the shape of the energy well around bcc is very flat at
all compressions (less so for hcp; see the 1-D profile of
the well around α = 120 degrees in Fig. 3), suggesting
that anharmonicity may be crucially important in bcc
Be. One notable observation is that the small, non-ideal
value for the hcp c/a ratio at low pressure may actually
facilitate deformation along the Burgers path, because it
is precisely this low value which is required to move from
hcp to bcc with minimal additional distortions [28].

In constructing the free energy of solid Be, we assume
that the individual hcp and bcc phases remain distinct,
even at temperatures above which transformations such
as that suggested by Fig.3 could occur. The reasons are
two-fold: 1) The Burgers transformation represents an
individual mode of ionic excitation. In a heated solid,
only a tiny fraction of the thermal energy will be dis-
tributed to this particular mode. Other modes are ex-
pected to leave the system in a distinct solid phase as
long as the amplitudes are small (i.e., for T < Tmelt).
2) Even if the energy barrier in question is overcome, we
will show below that the EOS of hcp and bcc are re-
markably similar. Though the entropy of the solid may
be slightly affected by an increased propensity for Be to
visit intermediate states between hcp and bcc along the
Burgers path, the internal energy and pressure will likely

be rather insensitive to these infrequent excursions, given
the very small energy differences we see in Fig.3.

B. Ion-thermal free energy: Quasiharmonic theory

In order to investigate the free energy due to thermal
motion of the ions, we compute the free energy within
quasiharmonic theory [29] for each solid phase. From
the volume-dependent phonon density of states (PDOS),
DV (E), the harmonic free energy due to zero-point mo-
tion and thermal occupation of the independent normal
modes is[29]:

Fi(V, T ) = 3
∫ ∞

0

dEDV (E)

×
[

1
2
E + kBT log[1− exp(−E/kBT )]

]
.(4)

At temperatures larger than the characteristic phonon
energies, this reduces to the familiar Mie-Grüneisen ion-
thermal contribution, Fi(V, T ) = 3kBT log[θ0(V )/T ],
where θ0 is the logarithmic moment of the PDOS, de-
fined by:

kBθ0(V ) = e1/3 exp
(∫

log(E)DV (E)dE
)
. (5)

As T −→ 0, Fi(V, T ) −→ 9
8θ1(V ), where θ1 is the first

frequency moment of the PDOS, defined by:

kBθ1(V ) =
4
3

∫
EDV (E)dE (6)

Both moments are defined in such a way that if the
PDOS is of the Debye form, in which DV (E) ∝ E2 for
E < kBθ(V ) and is zero for E > kBθ(V ), then the mo-
ments are equal to each other and are equal to the Debye
temperature, θ(V ). In this case, the harmonic free energy
may be written in terms of the single volume-dependent
parameter θ(V ):

Fi(V, T ) = kBT

{
9
8
θ(V )
T

+3 log[1− exp(−θ(V )/T )]

−D[θ(V )/T ]
}
, (7)

with

D(y) =
3
y3

∫ y

0

x3

exp(x)− 1
. (8)

We have computed the PDOS on a dense grid
of volumes (between V= 3Å3/atom and 8Å3/atom)
for hcp and bcc phases using DFT-based linear re-
sponse methods[30]. For bcc at large volumes, V >
7.67Å3/atom, we compute a small number of imaginary
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FIG. 4: Phonon density of states of hcp (solid) and bcc
(dashed) Be at V= 5.47Å3/atom.

phonon frequencies, indicating that bcc Be is mechan-
ically unstable in these conditions [5, 6]. This renders
our calculations of phase stability meaningless in these
cases. However in the interest of extrapolating into the
unstable region, we ignore the contributions from imag-
inary frequencies in the PDOS by setting their spec-
tral weight equal to zero in what follows. We stress
that this is merely for convenience; in the end, we fo-
cus primarily on the region in which bcc is predicted
to be metastable. Fig. 4 shows DV (E) for both hcp
and bcc at V= 5.47Å3/atom. Note that both spectra
possess large-intensity peaks at a wavenumber just be-
low 1000 1/cm, above which the intensity drops to zero.
We find that large-energy high-intensity peaks coincide
for both phases throughout the range of volumes of in-
terest. This renders the various volume-dependent mo-
ments, discussed above, to be quite similar for the two
phases. Though less apparent from the figure, it is also
the case that for each phase we find θ0 to be within
two percent of θ1 at all volumes. Therefore, the Debye
model (eqs.7,8) is an excellent approximation to the full
quasiharmonic free energy (eq.4). Indeed, direct com-
parisons between the free energies of eq.4, using the full
PDOS, and eqs.7 and 8, using a Debye temperature set
equal to θ0 bear this out. This is fortunate, because
one must differentiate Fi(V, T ) with respect to V to ob-
tain the ion-thermal contribution to the pressure; it is
much easier to characterize the volume-dependence of
a single number, θ, than the volume-dependence of a
whole function of energy, DV (E). To this end, we pa-
rameterize the V -dependence of θ by assuming that the
ion-thermal Grüneisen parameter varies linearly with V :
γ ≡ −d log θ/d log V = AV + B. This produces a three-
parameter form for θ(V ),

θ(V ) = θ(0)
(
V

Vref

)−B

exp[A(Vref − V )], (9)

which we then fit to our ab initio calculations of θ0 at var-
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FIG. 5: Computed θ0 of hcp (open circles) and bcc (open
squares), together with fits defined by eq.9 (solid lines).

ious V for hcp and bcc Be. Choosing reference volumes of
Vref(hcp)= 7.75Å3/atom and Vref(bcc)= 7.62 Å3/atom,
we obtain θ(0)(hcp)= 982.8 K, A(hcp)= 0.081 Å−3,
B(hcp)= 0.515; θ(0)(bcc)= 886.9 K, A(bcc)= 0.131Å−3,
and B(bcc)= 0.364. This fit reproduces the computed
values of θ(0) to within 2 percent for both phases. Fig. 5
shows the resulting θ(V ) for hcp and bcc phases. Again,
we stress that for V > 7.67Å3/atom, the bcc θ(V ) is an
extrapolation which ignores the imaginary frequencies in-
dicating mechanical instability for that phase.

We note in passing that the electron-thermal term of
eq.1 has been shown to be small in solid Be [5, 6, 14].
Upon calculating the electronic densities of states for hcp
and bcc Be as a function of V and using the low-T Som-
merfeld expansion [29], we too arrive at the conclusion
that electronic excitations are of negligible importance
for determining the hcp-bcc phase line. In particular, we
find that the inclusion of electronic excitations changes
the hcp-bcc transition temperature by no more than 5
percent, even at the highest temperatures. Neverthe-
less, we do include electronic excitations (as inferred from
our GGA-DFT calculations of the electronic density of
states) in this work: Invoking the Sommerfeld expan-
sion, in which Fe(V, T ) ∝ N(EF )T 2 at low-T (T < TF ),
we take Fe(V, T ) = αe(V/Ve)KT 2 [29]. Calculations of
the V -dependent electronic densities of states then give
αe(hcp)= 8.33 × 10−6 K−2, K(hcp) = 0.67, Ve(hcp)=
7.751Å−3/atom, αe(bcc)= 1.57 × 10−5 K−2, K(hcp) =
0.86, Ve(hcp)= 7.618Å−3/atom.

This treatment of cold + quasiharmonic ion-thermal
+ (very small) electron-thermal free energy contributions
for solid Be produces excellent agreement with EOS data
for the hcp phase. Recent measurement of the room-T
isotherm [12] gives B0(hcp)= 109.88 GPa and B1(hcp)=
3.59, while our hcp equation of state gives B0(hcp)=
104.58 GPa and B1(hcp)= 3.63 at T= 300 K. Our equi-
librium volume at room-T is 7.939 Å3/atom, roughly
2 percent smaller than the measured value. Our com-
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(P ,T )-points to the left of this line, bcc is predicted to be
mechanically unstable.

puted (linear) thermal expansion coefficient for hcp Be is
α = 10.9× 106 K−1, compared to the experimental value
of 11.3× 106 K−1 [31].

Because θbcc(V ) < θhcp(V ) while the T= 0 internal
energy of hcp is less than that of bcc (for pressures be-
low ∼ 400 GPa), Be is predicted to undergo a transition
from hcp −→ bcc as T is increased. Other researchers
have predicted this as well [5, 6, 14]. By using the two-
phase Maxwell construction with our phase-dependent
Helmholtz free energies we compute the hcp-bcc phase
line shown as the black curve in Fig.6. The dotted line
denotes the V= 7.67Å3/atom isochore in the bcc phase.
For V > 7.67Å3/atom, bcc Be is predicted to be mechan-
ically unstable at T= 0 (discounting zero-point motion);
all points to the left of the dotted line are therefore ex-
trapolations into the bcc-unstable region [32]. Note that
the extrapolated transition temperature between hcp and
bcc at P= 0 is 2630K, significantly higher than the 1523
K result inferred from experiments, and well above the
ambient-pressure melt temperature of 1562 K [10]. Our
current best estimate of the Be melt line appears as the
dashed line in Fig.6; the symbols represent the experi-
mental P = 0 melting point (upward triangle) and ab
initio 2-phase melting results (downward triangles) in
which the solid phase is chosen to be bcc[26]. These three
melt points are connected using a Simon-Glatzel fit [33].
Our hcp-bcc phase line result seems to be in reasonable
agreement with the work of Rudin et al.[5] and Robert
et al.[14], though neither groups reported their extrap-
olated ambient-pressure hcp-bcc transition temperature.
It is important to note that the hcp-bcc internal energy
difference at T= 0, giving rise to the cold hcp-bcc transi-

tion pressure of ∼ 400 GPa [5, 6, 14], is essentially within
the typical errors associated with LDA and/or GGA ap-
proximations. In this sense, errors in the cold energies
could give rise to appreciable shifts in the phase bound-
ary. In spite of this, we assume, for sake of argument,
that the cold curves are sufficiently accurate for our pur-
poses.

Yet another cause for concern is the complete neglect
of anharmonicity, or contributions to the energy of ionic
excitations which are not merely quadratic functions of
atomic displacements away from equilibrium. Anhar-
monicity can give rise to deviations of the specific heat
from the Dulong-Petit value of 3kB/atom at high-T .
Large anharmonicity may be expected in situations in
which barriers between local minima in the potential en-
ergy surface of the ions are small and can therefore be
overcome at high-T , such as shown in Fig.3. Indeed,
other groups have suggested this as a strong possibility
for bcc Be, owing to its mechanical instability at large V
[5, 6]. Our investigations using ab initio MD (described
in detail below for its application to the liquid) have re-
vealed only very minor deviations in the specific heat
for both solid phases at the conditions relevant for their
metastability [34]. We thus neglect anharmonicity in the
construction of the solid free energies.

III. CONSTRUCTION OF LIQUID FREE
ENERGY AND PHASE DIAGRAM

We break the modeling of the liquid EOS into two
parts. The low-T (T < 2 eV) liquid free energy is con-
structed by using our solid free energies as a reference,
together with our (limited) knowledge of the melt curve.
The liquid EOS so constructed is then validated by per-
forming select ab initio molecular dynamics calculations
of the internal energy and pressure, which are shown to
compare well to those of the model. The high-T (kBT >
2 eV) liquid free energy is constructed using a global
EOS model similar to QEOS [39]. This is fit as closely
as possible to the low-T EOS at kBT = 2 eV. At higher
temperatures, where the electron-thermal term of Eq.1 is
dominant, this approach uses an atom-in-jellium model
known as Purgatorio [18] to describe ionization due to
pressure and temperature.

A. Low-T liquid

For an elemental metallic liquid at temperatures in the
neighborhood of melting, the specific heat is generally
quite close to the Dulong-Petit value of 3kB/atom, just
as it is for solids [3]. As such, it is reasonable to assume
that the liquid free energy can be modeled in a manner
similar to that for solids. We use the model of Chisolm
and Wallace [16], in which the free energy per atom is of
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the form,

F (V, T ) = F0(V )+3kBT log
(
θ̄

T

)
−kBT log(w)+Fe(V, T ).

(10)
The first term is a ”cold curve” for the liquid. The sec-
ond term is a Mie-Grüneisen piece accounting for ionic
excitations at high-T within a representative many-body
potential well with a curvature set by the effective Debye
temperature, θ̄. The third term accounts for the pres-
ence of multiple such wells (with the number of wells
being wN where N is the number of atoms), and can
be combined with the second term by defining another
effective Debye-T , θ̃ = θ̄/w1/3. The last term accounts
for electronic excitations. This form for the liquid free
energy has specific heat CV = 3kB/atom if Fe = 0. It
was shown previously by some of us that this form works
very well in reproducing both melt lines and liquid EOS
calculations for liquid carbon [35].

Since the electron-thermal term is of negligible impor-
tance for the solid phases of Be, we also expect it to
be relatively unimportant for the liquid (for this low-
T part). This will be justified below when compar-
ing to ab initio calculations. For convenience (see be-
low), we then fix the electron-thermal term for the liq-
uid to be exactly the same as for the bcc phase. Hence,
Fe(V, T ) = αe(V/Ve)KT 2, where αe(liquid)= 8.33×10−6

K−2, K(liquid) = 0.67, Ve(liquid)= 7.751Å−3/atom,
αe(liquid)= 1.57 × 10−5 K−2. Just as for the hcp-bcc
phase line, we find the melt lines to be practically unaf-
fected by setting Fe = 0 for all three phases. The param-
eters of the liquid model are then completely specified
by F0(V ), which controls the energy difference between
solid and liquid, and θ̃(V ), which controls the entropy
difference.

We first consider θ̃(V ). For elemental metals it has
been suggested that the increase in entropy from solid to
liquid at constant V is roughly independent of V and is
fairly universal across a wide range of elements [3]. Solid-
liquid entropy differences for elements in the same col-
umn of the periodic table as Be, Mg and Ca, are around
0.85−0.9kB/atom [3]; we assume the identical difference
for Be. If this difference is ∆S, then at high-T for which
the Mie-Grüneisen expression for Fi is valid, we have,

θ̃(V ) = θsolid(V ) exp
[
−∆S

3kB

]
, (11)

as long as Fe(solid) = Fe(liquid) in the neighborhood
of the melt line. If ∆S is independent of V , then the
V -dependence of θ̃ is entirely determined by the V -
dependence of θsolid. Thus we choose the Grüneisen pa-
rameter of the liquid to be of the form AV +B, as we have
for the solid phases. The melt line appearing in Fig.6
was computed with 2-phase simulations using the bcc
phase; we then fix ∆S = 0.87kB/atom and use θbcc(V )
for θsolid(V ), obtaining a form for θ̃(V ) identical to that
of Eq.9 with Vref(liquid)= 7.62 Å3/atom, θ(0)(liquid)=
663.6 K, A(liquid)= 0.131Å−3, and B(liquid)= 0.364.

FIG. 7: Phase diagram of Be from the EOS model. Upward
triangle is the experimental ambient-pressure melt point,
Ref.[10]; downward triangles are results from 2-phase sim-
ulations melting from bcc, Ref.[26]. Thin lines denote the
principal Hugoniot as computed by the EOS model.

This choice then ensures that the change in entropy going
from bcc to liquid is 0.87kB/atom at constant V , inde-
pendent of V . Since θhcp(V ) is quite similar to θbcc(V )
on the whole, a very similar ∆S between hcp and liquid
will be obtained as well.

With this choice of θ̃, it is now possible to fix F0(V ) for
the liquid by requiring that the melt line be that as ap-
pearing in Fig.6. In order for Tmelt to be a concave-down
and monotonically increasing function of P , we must
have: 1) V0(liquid)> V0(solid), 2) B0(liquid)< B0(solid),
and 3) the obvious constraint that the minimum cold
energy of the liquid is higher than that of the solid, so
φ = E0(liquid) −E0(solid)> 0. Within our EOS model,
the two lower-P melt points in Fig.6 are within the hcp-
stable region. Thus, we constrain the liquid cold curve by
requiring that the hcp melt line goes through those two
points, while the bcc melt line goes through the highest-
P point [36]. Using the 2-phase Maxwell construction
to determine hcp-liquid and bcc-liquid phase lines, we
arrive at a cold curve of the form: F0(V ) = Fu

0 (V ) +
F break

0 (V ). Fu
0 (V ) is of the Vinet form [23] with param-

eters V0(liquid)= 7.95 Å3/atom, B0(liquid)= 114 GPa,
B1(liquid)= 3.64, and φ = E0(liquid)−E0(bcc)= 0.149
eV/atom. F break

0 (V ) = Aun/(B+un) with u = 1−Vb/V ,
and A= -2.0 eV, B= 5.0, n= 3, Vb= 4.25Å3/atom;
F break

0 (V ) is only added if V > Vb, and is set to zero
otherwise. Note that we fixed the value of B1(liquid) to
be the same as that of bcc for convenience. This choice of
parameters defines F0(V ) for the liquid. Together with
θ̃(V ) and the solid free energies discussed above, we ob-
tain the phase diagram shown in Fig.7. The melt lines
from hcp and bcc are nearly identical, as evidenced by
the absence of a prominent cusp in the melt line at the
hcp-bcc-liquid triple point. This is due to the fact that
hcp and bcc free energies are so remarkably similar, as
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FIG. 8: Internal energy and pressure isotherms in the liquid.
Lines are the results of .the liquid free energy model; dots are
the results from ab initio MD.

we noted above.

Figure 8 shows energy and pressure isotherms for liq-
uid Be as computed by the free energy model, together
with select results obtained by performing ab initio MD
simulations. For these simulations, we placed 512 Be
atoms in a box with periodic boundary conditions and
used the QBOX code [37] with Γ-only k-point sampling
to compute energy and pressure at the desired densi-
ties and temperatures by simulating for up to several ps.
Timesteps were chosen to be 1 fs and we used a velocity-
scaling thermostat with a response time of 100 fs. Note
that the agreement between E and P as computed in the
MD, and E and P as predicted by the liquid free energy
model is quite good [38]. This suggests that the liquid
model is relatively accurate, and that the basic assump-
tions embodied in the model, such as the use of Eqs.10
and 11, are reasonable. We emphasize that the ab initio
MD calculations of E and P for liquid Be were not used
to fit the liquid free energy model.

B. High-T liquid: Plasma

Above kBT = 2 eV, we use a global EOS model similar
to QEOS [39] for generating the EOS of the liquid. In
QEOS, the free energy is partitioned as in Eq.1. F0(V ) is
of a form similar to what we have described above, only
defined over a much wider range of V . The ion-thermal
term is constructed to have a specific heat which is equal
to 3kB at Tmelt(V ), and drops to the ideal gas value
of 3/2kB according to the scaling law [Tmelt(V )/T ]1/3,
where Tmelt(V ) is the melt temperature as predicted by
the Lindemann law [3]. The use of the Lindemann law re-
quires that the Grüneisen parameter of the solid be speci-
fied as a function of V . Our model for γsolid(V ) is a piece-
wise linear function which closely resembles the phase-
dependent γ we have determined above for Be. Care must
be taken when constructing the electron-thermal term at
high-T , as this term becomes the dominant contributor
as T/Tmelt becomes very large and ionization plays a
role. Fortunately, it is in this regime that the details of
chemical bonding prevalent in the solid and low-T liquid
become less important. Thus, we use an average-atom-
in-jellium model for Fe(V, T ), in which hot Be is modeled
as a representative ion placed in a homogeneous electron
gas background. An early incarnation of this model, In-
ferno [40], solved this problem within a DFT framework
using the Local Density Approximation (LDA). We use
essentially the same prescription here, though with an
upgraded numerical package with enhanced capabilities
to track atomic resonances, known as Purgatorio [18]. In
this way, we are able to include the effects of inner shell
ionization on the EOS, in which the basic thermodynamic
variables such as E and P change dramatically as an elec-
tron, once bound and localized to an ion, becomes ”free”
and moves into the jellium continuum.

This global EOS model applies over a much wider
range of density, temperature and pressure than the
three-phase EOS. It is therefore necessary to embed the
more detailed three-phase EOS model within the wider-
range global model while maintaining thermodynamic
consistency in the overall tabulated EOS. This was done
in three steps. First, the global EOS was constructed
to agree as closely as possible with the pressure and en-
ergy isotherm at a temperature of 2 eV from the smaller-
range three-phase EOS. After applying an energy shift
to align the energy zero values in the models, agreement
was achieved at the high density region, but there was
still some discrepancy at the low density end. The second
step eliminated this discrepancy by smoothly and mono-
tonically interpolating between the low-T model and the
high-T model over a temperature range of 1.4 eV. Finally,
a similar interpolation procedure was used to smooth the
transition as a function of density, both at the low den-
sity (0.8 to 1.66 g/cm3) and at high density (14.96 to 25.1
g/cm3) ends of the three-phase model. The interpolation
started at the boundary of the three-phase model and
modified only the values of the EOS associated with the
global model. This procedure resulted in a global equa-
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FIG. 9: Principal Hugoniot of Be in the plasma regime as
calculated by the global EOS model with an electron-thermal
term provided by Purgatorio [18].

tion of state that obeys the thermodynamic constraint
dE/dT > 0 everywhere.

C. Discussion of principal shock Hugoniot

Returning to the lower-T phase diagram, the predic-
tion of the hcp-bcc phase line, together with its relation
to the Be melt curve, has implications for the interpreta-
tion of dynamic high-pressure experiments performed on
Be. If Be is subjected to a planar one-dimensional shock,
the locus of accessible final states will lie along the prin-
cipal Hugoniot curve [8], which we calculate and display
as the thin lines in Fig.7 [41]. Note the discontinuities
in the Hugoniot when traversing the phase boundaries, a
reflection of the fact that each phase possesses a distinct
free energy function. In particular, there is a very small
discontinuity going from hcp −→ bcc. This is due to
the very small entropy difference between the two solid
phases. There is a larger difference, however, between
the solid and liquid portions of the Hugoniot. This is
due to the larger entropy difference (∼ 0.9kB/atom) we
assumed between solid and liquid.

A key question is whether or not it is possible to shock
into the bcc phase prior to melting, starting from the am-
bient hcp initial state. Our work suggests that a defini-
tive answer to this question is likely to be difficult to
obtain from our predictions alone. The reason is that
uncertainties in the hcp-bcc phase line together with un-
certainties in the melt curve provide a wide range of pos-
sible shock melt scenarios. For example, in our EOS
model, the hcp-bcc-liquid triple point shown in Fig.7 is
right in the neighborhood of the point at which the prin-
cipal Hugoniot crosses the melt curve on the solid side
just above 200 GPa. Even though our scenario predicts
a small region of bcc stability along the Hugoniot, a small

change in the position of the triple-point could elimi-
nate this region entirely even if the Hugoniot remains
unchanged. Therefore, all we can say at present is that
we would predict at most a small portion of the principal
Hugoniot to lie in a bcc-stable region [42].

Fig.9 shows the high-P and -T portion of the princi-
pal Hugoniot in the (ρ, P )-plane as computed with the
Purgatorio-based global EOS. The small kink at a den-
sity just under 6 g/cm3 corresponds to a temperature of
roughly 2 eV, and is a result of the imperfect join be-
tween the lower-T 3-phase and higher-T plasma-based
models. The maximum compression reached along the
principal Hugoniot is just over 8.5 g/cm3, larger than
that predicted by the Thomas-Fermi electron-thermal
contribution as in the original QEOS work [39]. The
sharp turnaround in the P versus ρ Hugoniot curve is a
result of the ionization of the 1s2 core, and corresponds
to a temperature of roughly 106K. In addition to captur-
ing this ionization physics, the Purgatorio model uses a
fully-relativistic treatment for the electrons at all tem-
peratures. This is responsible for the density increase
again at very high pressures above 106 GPa, resulting ul-
timately in a limiting value of 7 times the initial density.

IV. CONCLUSIONS

We have constructed a multiphase EOS for Be using
phase-dependent free energy models constrained by ab
initio calculations. The hcp-bcc phase line was computed
to be in rough agreement with previous theoretical work
[5, 6, 14] in which the ambient-pressure extrapolation
of the phase boundary is above the melt curve. This is
in stark contradiction to the early experimental findings
[10], but in agreement with more recent results [13]. We
have also investigated T= 0 internal energies of Be along
the Burgers path connecting hcp to bcc, from which we
demonstrated that the energy well around bcc is very flat,
and the barrier separating hcp and bcc is very small. The
liquid EOS was constrained by our knowledge of the solid
EOS and the melt curve, together with atom-in-plasma
calculations to address very high temperatures. Our Be
EOS model is suitable for use in calculations of materials
behavior in extreme conditions.
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